Computational Invariant Theory

نویسنده

  • Gregor Kemper
چکیده

In the fall of 1997 I gave a series of lectures at Queen’s University on algorithms in invariant theory of finite groups. This article is an expanded version of the material presented there. The main topic is the calculation of the invariant ring of a finite group acting on a polynomial ring by linear transformations of the indeterminates. By “calculation” I mean finding a finite system of generators for the invariant ring, and (optionally) determining structural properties of it. In this exposition particular emphasis is placed on the case that the ground field has positive characteristic dividing the group order. We call this the modular case, and it is important for several reasons. First, many theoretical questions about the structure of modular invariant rings are still open. I will address the problems which I consider the most important or fascinating in the course of the paper. Thus it is very helpful to be able to compute modular invariant rings in order to gain experience, formulate or check conjectures, and gather some insight which in fortunate cases leads to proofs. Furthermore, the computation of modular invariant ring can be very useful for the study of cohomology of finite groups (see Adem and Milgram [1]). This exposition also treats the nonmodular case (characteristic zero or coprime to the group order), where computations are much easier and the theory is for the most part settled. There are also various applications in this case, such as the solution of algebraic equations or the study of dynamical systems with symmetries (see, for example, Gatermann [11], Worfolk [26]). This is not a research paper, and so there is no claim of originality. In fact, most of the material is covered by the papers [14,15,18]. The goal is to give a coherent exposition of what is scattered through several original papers, which I hope is readable and assumes as little knowledge as possible. There are several implementations of the algorithms treated in this text. The most efficient of these is contained in the Magma system (see Kemper and Steel [18] and Bosma et al. [6]). There is an older implementation in Maple written by myself, which can be obtained by anonymous ftp from the site ftp.iwr.uni-heidelberg.de under /pub/kemper/INVAR2. A further implementation in Singular has been written by Agnes Heydtmann (email [email protected]).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE USE OF KULSHAMMER TYPE INVARIANTS IN REPRESENTATION THEORY

Since 2005 a new powerful invariant of an algebra has emerged using the earlier work of Horvath, Hethelyi, Kulshammer and Murray. The authors studied Morita invariance of a sequence of ideals of the center of a nite dimensional algebra over a eld of nite characteristic. It was shown that the sequence of ideals is actually a derived invariant, and most recently a slightly modied version o...

متن کامل

Invariant functions for solving multiplicative discrete and continuous ordinary differential equations

In this paper, at first the elemantary and basic concepts of multiplicative discrete and continous differentian and integration introduced. Then for these kinds of differentiation invariant functions the general solution of discrete and continous multiplicative differential equations will be given. Finaly a vast class of difference equations with variable coefficients and nonlinear difference e...

متن کامل

Common Fixed Points and Invariant Approximations for Cq-commuting Generalized nonexpansive mappings

Some common fixed point theorems for Cq-commuting generalized nonexpansive mappings have been proved in metric spaces. As applications, invariant approximation results are also obtained. The results proved in the paper extend and generalize several known results including those of M. Abbas and J.K. Kim [Bull. Korean Math. Soc. 44(2007) 537-545], I. Beg, N. Shahzad and M. Iqbal [Approx. Theory A...

متن کامل

Oplus-supplemented modules with respect to images of a fully invariant submodule

Lifting modules and their various generalizations as some main concepts in module theory have been studied and investigated extensively in recent decades. Some authors tried to present some homological aspects of lifting modules and -supplemented modules. In this work, we shall present a homological approach to -supplemented modules via fully invariant submodules. Lifting modules and H-suppleme...

متن کامل

Graph Theory and Classical Invariant Theory

Classical invariant theory has died and been resurrected many times. Its golden age in the last century was marked with the flowering of unsurpassed computational ability, and the explicit determination of the invariants of most of the elementary polynomials. The computational approach is commonly acknowledged to have been dealt a death-blow by Hilbert’s celebrated Basis Theorem, an existential...

متن کامل

نظریه میدان اسکالر کلاسیک با تقارن همدیس و پتانسیل نامثبت

We review the conformal symmetry group and investigate the isomorphism between the conformal group and O( D,2 ) . We study the classically  conformal invariant  scalar theory in D -dimensions with a non-positive potential . We solve the  equations  of motion  by  assigning O(D-1, 2)symmetry to the classical solutions with broken translational symmetry in all directions. Then we consider a six d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998